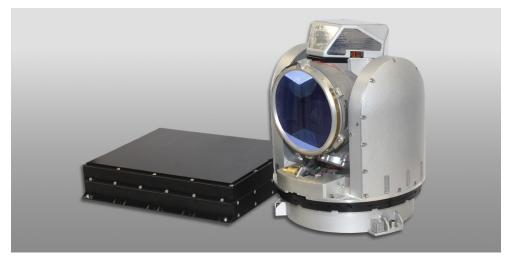
## **CrossBeam**®

### Optical communication terminal




For more information about our optical and photonics expertise and technology, visit: caci.com/photonic-solutions

### Flexible free space optical (FSO) satellite crosslink system

CACI's CrossBeam is a fully integrated, compact, and robust FSO communication system designed for compliance with the Space Development Agency's (SDA) Tranche 0/1/2/3 satellite crosslinks in low-earth orbit (LEO). CrossBeam features a common hemispherical beam steering optical head with a fine tracking mechanism designed to support the Space Development Agency's Proliferated Warfighter Space Architecture (PWSA) next-generation satellite network. CrossBeam also supports a range of other LEO, medium-earth orbit (MEO), and geosynchronous-earth orbit (GEO) applications.

Designed for low-cost, high-volume manufacturing, CrossBeam is equipped with a patented all-fiber-optic-based transmit and receive optics design, along with CACI's high-performance FSO communications modem technology, to provide reliable data communications for long-distance crosslink applications. CrossBeam's optical communication terminal (OCT) architecture is highly scalable and tailorable for other crosslink and other link applications for aircraft or ground terminals.





# CACI optical and photonic solutions — delivering flexible, adaptable, secure high-rate communications

CrossBeam terminals first supported DARPA's Mandrake 2 mission with two units launched in June 2021, successfully closing both space-to-space and space-to-ground links. CrossBeam also provided all 16 OCTs for DARPA's Blackjack constellation, which launched in June 2023, and are currently performing on SDA's Tranche 0/1/2 satellite crosslink programs.

Our FSO communications programs are conducted by CACI's multi-disciplinary Optical and Photonic Solutions team, composed of physicists and material scientists, as well as optical, electrical, and mechanical engineers. This team is focused on developing the most advanced photonics-based solutions, including optical modems, optical terminals, and high-power sources for communications. The team also conducts research and development of high-power optical sources for remote sensing applications and optical systems for space exploration.

| CROSSBEAM SPECIFICATIONS   |                                    |                    |                    |                    |
|----------------------------|------------------------------------|--------------------|--------------------|--------------------|
| Feature                    | Cross-<br>Beam-ST0                 | Cross-<br>Beam-ST1 | Cross-<br>Beam-ST2 | Cross-<br>Beam-ST3 |
| SDS tranche                | TO                                 | T1                 | T2                 | T3                 |
| SDA standard compliance    | 2.1.2                              | 3.0.1              | 3.1.0              | 3.2.0              |
| Link distance              | 6,500 km                           | 6,750 km           |                    |                    |
| Data rate                  | 1.25 Gbps                          | 2.5 Gbps           |                    |                    |
| Transmit optical power     | 1.25 W                             | 2.5 W              |                    |                    |
| Power                      | 50 W (typical)                     | 75 W (typical)     |                    |                    |
| Field of regard            | Full hemispherical                 |                    |                    |                    |
| Aperture size              | 10.5 cm                            |                    |                    |                    |
| Optical link margin        | 3 dB                               |                    |                    |                    |
| Position/<br>time accuracy | <1 cm / <1 nsec                    |                    |                    |                    |
| Acquisition time           | ~10 sec after on orbit calibration |                    |                    |                    |
| Beam director size/        | 10.3 in. H x 8.2 in. diameter      |                    |                    |                    |
| mass                       | 10 kg                              |                    |                    |                    |

#### **FEATURES**

- SDA Tranche 0/1/2/3 compliant.
- Low cost and low size, weight, and power (SWaP).
- Designed for manufacturability.
- High technology readiness level (TRL) and manufacturing readiness level (MRL).
- Variable data rate modem supports operation up to 2.5 Gbps.
- Launched, deployed, and functioning on orbit with DARPA's Mandrake 2 and Blackjack programs, and SDA programs.

### **BENEFITS**

- Delivers highly secure communications that are immune to RF interference and jamming.
- Very low probability of interception and detection.
- Enables secure communication in a radio frequency (RF)-denied environment.
- High-performance throughput for LEO space.
- Effectively unlimited use of optical spectrum, unlike limited RF communication.



### caci.com